IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

The deformed Krichever-Novikov algebra and Ward g-identities for correlators on higher

Genus Riemann surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 5435
(http://iopscience.iop.org/0305-4470/26/20/026)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:53

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

T. Phys. A: Math, Gen. 26 {1993) 5435-5441. Printed in the UK

The g-deformed Krichever—Novikov algebra and Ward
g-identities for correlators on higher genus Riemann surfaces

Le-Man Kuang

CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, People’s Republic of China
and Department of Physics, Hunan Normal University, Hunan 410006, People’s Republic
of Chinat : : o

Received 10 June 1993

Abstract. The g-deformed Krichever-Novikov algebra on higher genus Riemann surfaces
is obtained by means of the operator product expansion method. The Ward 4-identities for
correlation functions of primary figlds are derived. It is found that the Ward g-identities
cannot determine the two-point correfation function.

1. Intreduction

Over many years much attention has been paid to the Krichever-Novikov (kN) algebra
[!], the underlying symmetry of the conformal field theories on higher genus Riemann
surfaces [2-4], The KN algebra is a generalization of the Virasoro algebra from a trivial
Riemann surface to a higher-genus Riemann surface, which enables us to treat the
Teichmuller deformation and conformal deformations on the same footing.

Consider a compact Riemann surface T of genus g with two distinguished points
P, and P_ in a general position; the N algebra is defined by the refation

[Lny Lm]= § C;an+m-r ; . (1)

r=-=g

where go=2g, and the structure constants are given by
Com= jg dw (e(w)en(w) — el{wW)en(W))y s - AW). 2)
< .

Here we have used the KN bases on T

— =gl __a_
el Q) =z% (1+0(z4)) P 3)

Q) =25""0 (1 + O(z))(dz. )
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where QcZ, and z. is the local coordinates in the neighbourhood of P. . They satisfy
the following duality relation:

§ e D) Q) = O 4)
- .
where the contours C.= {QeZ, 7(Q)=r} are level lines of the univalent function
g
r(@)=Re f dp (5)
. &

where dp is the third kind of differential on T with poles of first order at the points P,
with residues x1, @ is an arbitrary initial point, and as r—300, C; become circles
enveloping the points P,.

During the last few years a growing interest in the study of quantum groups and
algebras [5, 6] has appeared. These new mathematical objects play an important role
in some quantum systems, such as exactly solved statistical models [7], integrable field
theory [7], vertex and spin models [8] and conformal field theory [9]. Their applications
in molecular, nuciear, particle pbysics and quantum optics [10-12] have also been
investigated in recent years. More recently, a great deal of attention has been paid to
the g-Virasoro algebra [13-21]. It is well known that the operator product expansion
(ope) method is an effective approach to study (super)conformal algebras. It is used
widely to construct superconformal algebras on higher-genus Riemann surfaces {2-4].
Recently, it has also been applied to the g-Virasoro algebra [13-21]. In this paper, we
intend to use the oPE method to obtain a g-deformation of the kN algebra, the g-kN
algebra, and to derive the Ward g-identities for correlators on higher-genus Riemann
surfaces.

2. A g-deformation of the xN algebra

The ¢-xN algebra on I may be generated by the energy-momentum tensor T(z) which
can be expanded in terms of the KN bases on £ as

Q=% L.Q"QD) ' (6)
where L, are the generators of the g-kN algebra. Using (5), we have
L= Qe 0
e

In a local complex coordinate z that vanishes at the point P, equation (7) can be re-
expressed as

L,= § dz T(en(z). (&)

We now would like to evaluate the following bracket

[Lns Lin) = (LaL)g = (LnLn)q €)
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where the terms ( ), are defined via the g-product of two field operators A(z) and B(w)
[19]:

(A(2)B(w)),= A(zq)B(wg™"). (10)

For instance, we have

(L,,Lm.,=_<f dz j; dw ex(2)e (wHT(2) T(w)),
Cy L)

=g _‘f dz j; dw e,(gz)em(wq™ ) T(2g) T(wg ™)
& &

=q" "LuLm. (n
Similarly we have
(LonLn) =g~ LppLy. (12)
Combining (11) and (12), we then can rewrite the bracket in (9) as k
[Lns Ll =" "Likm—q """ L, L. (13

With the help of (8), (11) and (12), the above bracket can be expressed as a complex
contour integral

[Ln,Lm]=§ dZ_‘f dw e(2)en(w){(T(2) T(w), — (T(W)T(2))s}
Cy Cy

=j§ dz§ dw ex(en(W)R(TED TW), (14)
C; Cy

where the contours C, envelop the point w, and R denotes the radial ordering

A(z)B(w) |2 >{w]

BONAG)  |A<w. (1)

R(A(2)B(w)) = {

As is well known, although the OPEs on I are generally g dependent, the singularities
of the oPEs on X are g independent. So that when z is close to w, the oPE on X for the
generators of the g-kN algebra on X is the same as the g=0 case

-1
1 (T(wq _)1+ i’_’(lwq) )+ 1
z—w\zg—wq g " —wg

(TT(w)), = " DiT(w)+regular terms (16)

where D}, is the g-derivative

_fvg)—flwg™)
wig—q")

Making use of this definition for the g-derivative, one can rewrite the oPE (16) as

1 { T(gw) _ T(g"'w)
wig—g™') lz—wq® z—wg™

D§ fiw) amn

(TEYI(w)), = } +regular terms (18)
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which indicates that the opE is singular at the points z=wg "> Substituting (18) into
{14), we have

A2 dw) ) Tigw) T{g W)
[ c, c. w(g—g i) 3_”"12 Z—wg ?

=_1—_] dw {q""”e,,(wq)ein(w) T(gw)
q—-4q P

—q " eifg Wenlg ' w) T(q“‘W)}

1 L -y ~(n—m) ryr
= —1 Z {f D — o ¢ )Dmn}Ln-t-m—r (19)
44 =g

g0
= 2: <C;m>qL'n+m—r
r=Eq

where the structure constant is given by

(n—m)Dr _ —(n—m)Dr
9-4q

with
Dim= :f; dw ex(w)en(W) s m—r(W). (21
<
It is obvious that the g-deformed xn algebra coincides with the usual one {1 in the

limit g 1.

3. The Ward g-identities for correlators

Consider a primary field ®(z) with the conformal weight #. In quantum theory, the
variation in ®(z) is given by

SP(z)= f dw e(W)R(T(2)D(w)), (22)
Cr

where

8(2) = &enlz). ' (23)
The ¢-0OPE in equation (22) is given by
(T(z)D(w)),

sh o(g”! Oigw Did
=:»:[- v}v {qu/ﬂ: E w:?t/z& + zq"/ﬂst_].nlqu/z”}-k ; _(:) +regular terms. (24)



Krichever-Novikov algebra and Ward g-identities 5439

In order to obtain the Ward g¢-identities for the correlation functions of primary
fields on Z, we consider the action of the generator of infinitesimal conformal trans-
formations on the correlation of # primary fields ®(w;) with correspondent conformal
weights A; (i=1,2,...,n):

< j; dz &(z) T()D, (w,)Do(ws) . . . cb,.(w,,)> (25)

q

where C, encircles all the points {w,g*"*, i=1,2,..., n}. Here the correlation function
{ ...y 1s taken relative to the ‘in’ (|0),) and the ‘out’ (,{0}) vacuums which are defined
by requiring that

LA0>,=0 m+go=—1

#%0| Ly, =0 mt+ge<l,
Note that the above conditions ensure the regularity of T(2)]0, and its adjoint at z=
0 and z=c0. By analyticity, the contour C; in (25) can be deformed to a sum of n

contours with each contour C., surrounding the points {w:¢*"*}. Then as a consequence
of the g-orE (24), we have

(26)

dz )T @D 0m1) . . Do),

C;

= i <(!>1(w|) . § dz e(2)(T(2)DPAW))y. .. (I),,(w,,)>
! Cry q

-5 f 42 8(2) A (DM « - Do) @
i=1 [or 7

where the differential operator 2 % o 18 given by

=g L g™ D3 28
z;m_z_wjr [34] qujzh;_w‘q—lfzm zq_””"—w,q'm‘ + D (- (28)
We therefore obtain the Ward g-identity
(TE@Di (1) . .. OoW)D= T P8, (DUW) . .. Bu(Wa)Dg. {29)
=1

From equation (26), it is easy to see that the generators L_,,, and L_, ., annihilate
both the ‘in’ and ‘out’ vacuums. On substituting &(z} =e,(z) for m=-g,, —go+ 1 into
(27) and integrating, for any #-point function we obtain the following projective Ward
g-identities :

i Wi {em(wig")g" 21— en(wg Mg Y (Do(wy) . . Dulw,)D,=0  (30)

=1

where m= —8g, _goﬁ 1.

It is well known that in standard conformal field theories the two-point and three-
point functions are uniquely determined up to a normalization constant by the Ward
identities. Nevertheless. the situation for the g-deformed case is quite different. Here
the Ward g-identity do not uniquely specify them, as will be illustrated below. For this
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purpose we assume the correlation function of two primary fields ®;{w,), ®2(w2) with
conformal weights h;, /1, respectively, to be of the form

- 1
(O (W) P w2) g =—"1 [wy| > [wol (31
(W] - Wz)q
where the g-distance function is defined by
n !
n—w= 3 T k) (32)

=1 [n—EQUEN
Substituting (31) into (30), for the g #0 case we have the following conditions:

[/2]=0=[A] (33a)
[ —n—2g0(h1 + ko)) — the—n—2go(A1 + h2)} =0 (330)
(2R + By —n—2go(1 + h2)] — [2h2 + k1 — n— 2g0(My + )] =0 (33¢)
[2g0h: + (280 — 2)hy + n] — [280h2 + (280— )i +n] = 0. (33d)

When |g] #£1, these equations have only the trivial solution b =0=/h, for all values of
n. Obviously, this is an uninteresting case for physicists. However, when the deformation
parameter g is the root of unity, i.e. g=¢'"%, they have the solution A, = #; for all values
of n. This means that #, which characterizes the solution, is not unique but arbitrary,
s0 that the Ward g-identities do not determine the two-point function,

The above analyses hint that g-conformal field theory on higher genus Riemann
surfaces may have some new features, except that the parameter g is introduced through
the deformation.

It will be of interest to study further features of g-conformal field theory on higher-
genus Riemann surfaces.
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