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The q-deformed Krichever-Novikov algebra and Ward 
q-identities for correlators on higher genus Riemann surfaces 
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CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, People's Republic of China 
and Department of Physics, Hunan Normal University, Hunan 410006, People's Republic 
of Chinat 

Reaived IO June 1993 

Abstract The q-deformed Krichever-Novikov algebra on higher genus Riemann surfaces 
is obtained by means of the operator product expansion method. The Ward q-identities for 
wrrelation functions of primary fields are derived. It is found that the Ward q-identities 
cannot determine the two-point wrrelation function. 

1. Iotradudion 

Over many years much attention has been paid to the Krichever-Novikov (KN) algebra 
[I] ,  the underlying symmetry of the conformal field theories on higher genus Riemann 
surfaces [ 2 4 .  The KN algebra is a generalization of the Virasoro algebra from a trivial 
Riemann surface to a higher-genus Riemann surface, which enables us to treat the 
Teichmuller deformation and conformal deformations on the same footing. 

Consider a compact Riemann surface I: of genus g with two distinguished points 
P+ and P- in a general position; the KN algebra is defined by the relation 

where go=fg, and the structure constants are given by 

CL= fCr dw (e.(w)eL(w) - e~(w)e,(w))n.+,-,(w). (2) 

Here we have used the KN bases on I:: 

a 
a Z +  

e.(Q)=z:'-go+'(l +O(z,)) - 

t Mailing Address. 

(3) 
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where QEZ, and z* is the local coordinates in the neighbourhood of P* They satisfy 
the following duality relation: 

fc, en(QPm(Q) = 6, (4) 

rtQ) =Re ji d~ (5) 

where the contours C,= {QEZ, ~ ( Q ) = T )  are level lines ofthe univalent function 

where dp is the third kind of differential on Z with poles of first order at the points P, 
with residues il, QO is an arbitrary initial point, and as z+&oo, C, become circles 
enveloping the points P*. 

During the last few years a growing interest in the study of quantum groups and 
algebras [5,6] has appeared. These new mathematical objects play an important role 
in some quantum systems, such as exactly solved statistical models [7], integrable field 
theory [7], vertex and spin models [SI and conformal field theory [9 ] .  Their applications 
in molecular, nuclear, particle physics and quantum optics [IO-121 have also been 
investigated in recent years. More recently, a great deal of attention has been paid to 
the q-Virasoro algebra [13-211. It is well known that the operator product expansion 
(OPE) method is an effective approach to study (super)conformal algebras. It is used 
widely to construct superconformal algebras on higher-genus Riemann surfaces [U]. 
Recently, it has also been applied to the q-Virasoro algebra [13-211. In this paper, we 
intend to use the OPE method to obtain a q-deformation of the KN algebra, the q-KN 
algebra, and to derive the Ward q-identities for correlators on higher-genus RiemaM 
surfaces. 

2. A qdefonnation of the m algebra 

The q-KN algebra on 
can be expanded in terms of the KN bases on X as 

may & generated by the energy-momentum tensor T(z) which 

T(Q)=C L S " ( Q )  (6) 
n 

where .Ln are the generators of the q-KN algebra. Using (S), we have 

In a local complex coordinate z that vanishes at the point P,, equation (7) Can be re- 
expressed as 

L.= jcr T(z)e.(z). 
We now would like to evaluate the following bracket 
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where the terms ( )4 are defined via the q-product of two field operators A(z) and B(w) 
1191: 

Similarly we have 

(L&J = q-"-"'L,L,. (12) 

[L", Lm] =f?L*Lm -q-"-"'L,L.. (13) 

Combining (11) and (12), we then can rewrite the bracket in (9) as 

With the help of (8), (1 1) and (12), the above bracket can be expressed as a complex 
contour integral 

L, U= fct dz fCw dwe,(z)em(w)I(T(z)T(w),- V(w)T(z)),) 

As is well known, although the OPES on Z are generally g dependent, the singularities 
of the OPES on Z are g independent. So that when z is close to w, the OPE on Z for the 
generators of the q - m  algebra on ,Z is the same as the g=O case 

where LJL is the q-derivative 

Making use of this definition for the q-derivative, one can rewrite the OPE (16) as 
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which indicates that the OPE is singular at the points z=wq'*. Substituting (18) into 
(14), we have 

BO 
= c <CL)qL+m-, 

,--m 

where the structure constant is given by 

with 

It is obvious that the q-deformed KN algebra coincides with the usual one [ 11 in the 
limit q-I. 

3. The Ward pidentities for correlators 

Consider a primary field @(z) with the conformal weight h. In quantum theory, the 
variation in @(z) is given by 

6@(z)= dw &(w)R(T(z)@(w)),  
fC< 

where 

&(4 =I EneIl(Z). 
I 

The POPE in equation (22) is given by 

.. e 
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In order to obtain the Ward q-identities for the correlation functions of primary 
fields on 2, we consider the action of the generator of infinitesimal conformal trans- 
formations on the correlation of n primary fields @!(wj) with correspondent conformal 
weights hi (i= 1,2, . . . , n): 

where C, encircles all the points {wig**: i= I, 2, , . . , n). Here the correIation function 
( . . . >,is taken relative to the 'in' (IO),) and the 'out' (.(01) vacuums which are defined 
by requiring that 

Note that the above conditions ensure the regularity of T(z)lO), and its adjoint at z=  
0 and z = 00. By analyticity, the contour C, in (25) can be deformed to a sum of n 
contours with each contour C,, surrounding the points {wjq*").  Then as a consequence 
of the q-ope (24), we have 

dz E ( Z ) ( T ( Z ) @ i ( W i ) .  . .@n(Wn)>, 

We therefore obtain the Ward q-identity 

From equation (26), it is easy to see that the generators LEO, and Lmil annihilate 
both the 'in' and 'out' vacuums. On substituting &(z)=em(z) form= -go, -go* 1 into 
(27) and integrating, for any n-point function we obtain the following projective Ward 
q-identities : 

5 w ; l ( e , ( w ~ ) g W 1 a ~ ~ - e ~ ( w ~ - h l ) q - w ' a ~ ~ }  ( @ , ( w , ) .  . . @n(~d),=O (30) 
1- I 

where m =  -go, -go!= 1. 
It is well known that in standard conformal field theories the two-point and three- 

point functions are uniquely determined up to a normalization constant by the Ward 
identities. Nevertheless. the situation for the q-deformed case is quite different. Here 
the Ward q-identity do not uniquely specify them, as will be illustrated below. For this 
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purpose we assume the correlation function of two primary fields @I(wI), @ 2 ( ~ 2 )  with 
conformal weights hl , hz ,  respectively, to be of the form 

where the q-distance function is defined by 

Substituting (31) into (30), for the g#O case we have the following conditions: 

[h,] =o=  [hJ (334 
[h, -n- 2g&+ h31- [h2- n - 2go(hl+ h,)] = O  (33Q 
[2hl+ hz-n  -2g& +/I,)] - [2h*+ h, -n -2go(h, +h*)] = 0 ( 3 3 4  

[2g& + (2g0- 2)h2 + n ]  - [2gohz + @go- 2)hl +n]  = 0. (334 
When 141 # 1, these equations have only the trivial solution hl =O=hz for all values of 
n. Obviously, this is an uninteresting case for physicists. However, when the deformation 
parameter q is the root of unity, i.e. q=eina, they have the solution h, =h2 for all values 
of n. This means that n, which characterizes the solution, is not unique but arbitrary, 
so that the Ward q-identities do not determine the two-point function. 

The above analyses hint that q-conformal field theory on higher genus Riemann 
surfaces may have some new features, except that the parameter q is introduced through 
the deformation. 

It will be of interest to study further features of q-confonnal field theory on higher- 
genus Riemann surfaces. 
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